HiC TE, a computational pipeline for HiC data analysis to study the role of repeat family interactions in the genome 3D organization

The role of repetitive DNA in the 3D organization of the interphase nucleus is a subject of intensive study. In studies of 3D nucleus organization, mutual contacts of various loci can be identified by HiC sequencing. Typical analyses use binning of read pairs by location to reduce noise. We use binning by repeat families instead to make similar conclusions about repeat regions. To achieve this, we combined HiC data, reference genome data and tools for repeat analysis into a Nextflow pipeline identifying and quantifying the contacts of specific repeat families. As an output, our pipeline produces heatmaps showing contact frequency and circular diagrams visualizing repeat contact localization. Using our pipeline with tomato data, we revealed the preferential homotypic interactions of ribosomal DNA, centromeric satellites and some LTR retrotransposon families and, as expected, little contact between organellar and nuclear DNA elements. While the pipeline can be applied to any eukaryotic genome, results in plants provide better coverage, since the built in TE greedy nester software only detects tandems and LTR retrotransposons. Other repeats can be fed via GFF3 files. This pipeline represents a novel and reproducible way to analyze the role of repetitive elements in the 3D organization of genomes.

Satellite DNAs and human sex chromosome variation

Satellite DNAs are present on every chromosome in the cell and are typically enriched in repetitive, heterochromatic parts of the human genome. Sex chromosomes represent a unique genomic and epigenetic context. In this review, we first report what is known about satellite DNA biology on human X and Y chromosomes, including repeat content and organization, as well as satellite variation in typical euploid individuals. Then, we review sex chromosome aneuploidies that are among the most common types of aneuploidies in the general population, and are better tolerated than autosomal aneuploidies. This is demonstrated also by the fact that aging is associated with the loss of the X, and especially the Y chromosome. In addition, supernumerary sex chromosomes enable us to study general processes in a cell, such as analyzing heterochromatin dosage (i.e. additional Barr bodies and long heterochromatin arrays on Yq) and their downstream consequences. Finally, genomic and epigenetic organization and regulation of satellite DNA could influence chromosome stability and lead to aneuploidy. In this review, we argue that the complete annotation of satellite DNA on sex chromosomes in human, and especially in centromeric regions, will aid in explaining the prevalence and the consequences of sex chromosome aneuploidies.

Probably Correct -- Rescuing Repeats with Short and Long Reads

Ever since the introduction of high-throughput sequencing following the human genome project, assembling short reads into a reference of sufficient quality posed a significant problem as a large portion of the human genome—estimated 50–69%—is repetitive. As a result, a sizable proportion of sequencing reads is multi-mapping, i.e., without a unique placement in the genome. The two key parameters for whether or not a read is multi-mapping are the read length and genome complexity. Long reads are now able to span difficult, heterochromatic regions, including full centromeres, and characterize chromosomes from telomere to telomere. Moreover, identical reads or repeat arrays can be differentiated based on their epigenetic marks, such as methylation patterns, aiding in the assembly process. This is despite the fact that long reads still contain a modest percentage of sequencing errors, disorienting the aligners and assemblers both in accuracy and speed. Here, I review the proposed and implemented solutions to the repeat resolution and the multi-mapping read problem, as well as the downstream consequences of reference choice, repeat masking, and proper representation of sex chromosomes. I also consider the forthcoming challenges and solutions with regards to long reads, where we expect the shift from the problem of repeat localization within a single individual to the problem of repeat positioning within pangenomes.

Ten simple rules for biologists initiating a collaboration with computer scientists

Biology is increasingly digital, and scientists are generating huge amounts of data daily, turning molecules into sequences and text files. As a biologist, you might need help analyzing all these data and have considered collaborating with a computer scientist for the first, second, or third time. This person might have some training in computational biology, but their main focus has always been computer science (CS), and here is the challenge – how do you talk to them? They might be able to write efficient code, but they often do not know some of the basics of biology. When they look at your molecules, some of them might see text files before biology. Also, if explaining things takes so much time, is it worth it? Should you be analyzing your own data instead? Or perhaps you have noticed that all those big, shiny papers of today represent a smart blend of biology and CS. You have found a collaborator and want to learn how to engage them. These 10 simple rules aim to help..

Dynamic evolution of great ape Y chromosomes

The male-specific Y chromosome harbors genes important for sperm production. Because Y is repetitive, its DNA sequence was deciphered for only a few species, and its evolution remains elusive. Here we compared the Y chromosomes of great apes (human, chimpanzee, bonobo, gorilla, and orangutan) and found that many of their repetitive sequences and multicopy genes were likely already present in their common ancestor. Y repeats had increased intrachromosomal contacts, which might facilitate preservation of genes and gene regulatory elements. Chimpanzee and bonobo, experiencing high sperm competition, underwent many DNA changes and gene losses on the Y. Our research is significant for understanding the role of the Y chromosome in reproduction of nonhuman great apes, all of which are endangered.

Noise-cancelling repeat finder -- uncovering tandem repeats in error-prone long-read sequencing data

Tandem DNA repeats can be sequenced with long-read technologies, but cannot be accurately deciphered due to the lack of computational tools taking high error rates of these technologies into account. Here we introduce Noise-Cancelling Repeat Finder (NCRF) to uncover putative tandem repeats of specified motifs in noisy long reads produced by Pacific Biosciences and Oxford Nanopore sequencers. Using simulations, we validated the use of NCRF to locate tandem repeats with motifs of various lengths and demonstrated its superior performance as compared to two alternative tools. Using real human whole-genome sequencing data, NCRF identified long arrays of the (AATGG)n repeat involved in heat shock stress response.

High Satellite Repeat Turnover in Great Apes Studied with Short- and Long-Read Technologies

Satellite repeats are a structural component of centromeres and telomeres, and in some instances, their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50 bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups -- 1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and 2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However, clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males versus females; using Y chromosome assemblies or Fluorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59 kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions.

Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate

DNA conformation may deviate from the classical B-form in ∼13% of the human genome. Non-B DNA regulates many cellular processes; however, its effects on DNA polymerization speed and accuracy have not been investigated genome-wide. Such an inquiry is critical for understanding neurological diseases and cancer genome instability. Here, we present the first simultaneous examination of DNA polymerization kinetics and errors in the human genome sequenced with Single-Molecule Real-Time (SMRT) technology. We show that polymerization speed differs between non-B and B-DNA -- It decelerates at G-quadruplexes and fluctuates periodically at disease-causing tandem repeats. Analyzing polymerization kinetics profiles, we predict and validate experimentally non-B DNA formation for a novel motif. We demonstrate that several non-B motifs affect sequencing errors (e.g., G-quadruplexes increase error rates), and that sequencing errors are positively associated with polymerase slowdown. Finally, we show that highly divergent G4 motifs have pronounced polymerization slowdown and high sequencing error rates, suggesting similar mechanisms for sequencing errors and germline mutations.

RecoverY -- k-mer-based read classification for Y-chromosome-specific sequencing and assembly

The haploid mammalian Y chromosome is usually under-represented in genome assemblies due to high repeat content and low depth due to its haploid nature. One strategy to ameliorate the low coverage of Y sequences is to experimentally enrich Y-specific material before assembly. As the enrichment process is imperfect, algorithms are needed to identify putative Y-specific reads prior to downstream assembly. A strategy that uses k-mer abundances to identify such reads was used to assemble the gorilla Y. However, the strategy required the manual setting of key parameters, a time-consuming process leading to sub-optimal assemblies. We develop a method, RecoverY, that selects Y-specific reads by automatically choosing the abundance level at which a k-mer is deemed to originate from the Y. This algorithm uses prior knowledge about the Y chromosome of a related species or known Y transcript sequences. We evaluate RecoverY on both simulated and real data, for human and gorilla, and investigate its robustness to important parameters. We show that RecoverY leads to a vastly superior assembly compared to alternate strategies of filtering the reads or contigs. Compared to the preliminary strategy used by Tomaszkiewicz et al., we achieve a 33% improvement in assembly size and a 20% improvement in the NG50, demonstrating the power of automatic parameter selection.

A time- and cost-effective strategy to sequence mammalian Y Chromosomes -- an application to the de novo assembly of gorilla Y

The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.